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Abstract. The action of the isometry algebraUh(sl(2)) on theh-deformed Lobachevsky plane
is found. The invariant distance and the invariant two-point functions are shown to agree precisely
with the classical ones. The propagator of the Laplacian is calculated explicitly. It is invariant only
after adding a ‘non-classical’ sector to the Hilbert space.

1. Introduction

Theh-deformed Lobachevsky plane was introduced by Demidovet al [6] and by Manin [11].
Its function algebra is covariant underSlh(2,R), which is a triangular Hopf algebra, sometimes
called the Jordanian deformation ofSl(2,R). As opposed to theq-deformed quantum groups,
it is triangular, which means that the deformation from the classical case is less severe. In fact,
it is known thatUh(sl(2)) is related to its undeformed counterpart by a twist [1, 10]. While
this might suggest that the deformation is almost trivial in some sense, the problem of defining
suitable spaces of functions, in particular Hilbert spaces, which can be relevant to physical
systems is not at all trivial. In fact, it will turn out that in order to find an invariant propagator,
a certain ‘non-classical’ sector must be added to the Hilbert space, which disappears in the
classical limit.

The main goal of this paper is to calculate explicitly the invariant propagator on theh-
deformed Lobachewski plane. The first observation is that the well known covariance algebra
Uh(sl(2)) does not preserve the metric structure, but only the symplectic structure. Therefore,
in section 2, we first determine the three-parameter ‘group’ of isometries, which turns out to be
againUh(sl(2)), but with a different action on the space which corresponds to the well known
fractional transformations of the upper half-plane.

In order to definen-point ‘functions’ in a covariant way, in section 3 we introduce braided
copies of theh-deformed Lobachevsky plane. This allows one to determine invariant functions,
and in particular the invariant distance between two ‘points’. The distance turns out to involve
only a commutative subalgebra of the complete algebra, and agrees precisely with the classical
one.
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328 J Madore and H Steinacker

In section 5, we calculate the propagator of theh-deformed Laplacian explicitly. When
based on a naive generalization of the Hilbert space of modes of the undeformed case, it turns
out that the propagator is not invariant underUh(sl(2)). It does become invariant only after
adding another, ‘non-classical’ sector to the Hilbert space. This situation is reminiscent of a
similar phenomenon onq-deformed quantum spaces [8] and shows that theh-deformation is
not quite a trivial one. The propagator on the extended Hilbert space then turns out to agree
formally with the classical one.

This result should be compared with that of a recent work [12] where the propagator
on the theh-deformed Lobachevsky plane has been found to be finite provided one uses
the undeformedtensor product. Of course, this breaks the covariance underUh(sl(2)). In
our covariant treatment, the propagator turns out not to be regularized. This means that
either theh-deformation is not strong enough to regularize the UV divergences, or that
the different copies of the Hilbert space shouldnot be implemented via the braided tensor
product.

2. The isometries of theh-deformed Lobachevsky plane

The h-deformed Lobachevsky plane [2] can be defined [5] to be the formal∗-algebraA
generated by two Hermitian elementsx andy which satisfy the commutation relation

[x, y] = −2ihy (2.1)

whereh ∈ R and the factor−2 is present for historical reasons. We shall suppose thath > 0.
Throughout this paper, a ‘function’ on theh-deformed Lobachevsky plane is understood to be
an element ofA or a suitable completion thereof.

Using the variablez = x + iy, this becomes

[z, z̄] = 2ih(z− z̄). (2.2)

Introducing variablesr, s by x = rs−1 + 1
2ih andy = s−2, the above commutation relation

becomes

[r, s] = ihs2. (2.3)

In terms of these variables, it is easy to check that the algebra is covariant underSlh(2,R), i.e.
there is a coaction1 : A→ Fun(Slh(2,R))⊗A given by(

r

s

)
→
(
A B

C D

)
·⊗
(
r

s

)
(2.4)

where the algebra Fun(Slh(2,R)) is theh-deformed (Hopf)∗-algebra of functions onSl(2,R)
generated by the Hermitian elementsA,B,C,D, with relations

[A,B] = ihδ − ihA2

[A,C] = ihC2

[A,D] = ihCD − ihCA

[B,C] = ihCD + ihAC

[B,D] = ihD2 − ihδ

[C,D] = −ihC2
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where the quantum determinant

δ = AD − CB − ihCD = DA− CB − ihCA (2.5)

is central and set equal to one.
TheR-matrix associated with this quantum group, which solves the quantum Yang–Baxter

equation

R̂12R̂23R̂12 = R̂23R̂12R̂23 (2.6)

is given by

R̂ =


1 −ih ih −h2

0 0 1 ih

0 1 0 −ih

0 0 0 1

. (2.7)

It is triangular, i.e.R̂2 = 1, which also holds for the higher representations. The associated
calculus and Laplacian have been worked out elsewhere [2, 4, 5]. We will thus be brief here.

The covariant differential calculus(�∗(Ah), d) on a quantum plane can be found [2] by
the method of Wess and Zumino [18]. Forri = (r, s) andξ i = dri = (ξ, η) we have

rarb = R̂abcdrcrd raξb = R̂abcdξ crd
ξaξb = −R̂abcdξ cξd ∂ax

b = δba + R̂bdacxc∂d .
(2.8)

Explicitly, the second and third equations are

[r, ξ ] = −ihξs + ihηr − h2ηs [r, η] = ihηs

[s, ξ ] = −ihηs [s, η] = 0
(2.9)

and

ξ2 = ihξη ξη = −ηξ η2 = 0. (2.10)

One can also introduce [5] a frame or Stehbeinθa defined by

θ1 = y−1 dx θ2 = y−1 dy. (2.11)

They satisfy the commutation relations

f θa = θaf f ∈ Ah (2.12)

as well as the quadratic relations

(θ1)2 = 0 (θ2)2 = 0 θ1θ2 + θ2θ1 = 0. (2.13)

More details of this have been given elsewhere [4, 5]. One can also define a Hodge star operator
as

∗(θ1) = θ2 ∗ (1) = θ1θ2 (2.14)

we will see in section 3 that this is also the correct covariant definition.
By construction, the coaction of Funh(Sl(2,R)) onA preserves the symplectic structure;

however, it is not the group of isometries. This is so even classically, as was already noted in
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[5]. To find the correct isometries, consider first the commutative limit, where the metric is
ds2 = y−2(dx2 + dy2). The isometries are the well known fractional transformations

z→ z′ = Az +B

Cz +D
with

(
A B

C D

)
∈ Fun(Sl(2,R))

wherez = x +iy. In this section, we will find a similar transformation in the non-commutative
case, such that the isometries have the structure ofSLh(2,R), but with a different (co)action
than the symplectic one (2.4). The metric will turn out to be the same as in the commutative
case.

Since we later wish to determine the functions which are invariant under the isometries, it
is more useful to have an action of the universal enveloping algebraUh(sl(2)) onA rather than
a coaction of Funh(Sl(2)). Since these are dually paired Hopf algebras, a left (respectively,
right) coaction of Funh(Sl(2)) corresponds to a right (respectively, left) action ofUh(sl(2));
see, for example, [14]. The resulting cross-product algebra is given in (2.24); we take a small
detour and explain the steps leading to this algebra.

To find this dual action, we look for variables such that the above fractional transformation
of z becomes linear. First, we introduce different variablesz1, z2 for A which satisfy

[z1, z2] = 2ih(z1− z2) (2.15)

with star-structurez∗1 = z1 = z2 + ih; we use a bar to denote the star ofz. Then (2.2) is
recovered forz = z1 + 1

2ih. One can easily check (and it will become evident below) that this
is consistent with the following coaction of Funh(Sl(2)):

zi → (Azi +B)(Czi +D)−1 (2.16)

for i = 1, 2. A similar coaction for certainq-deformed algebras has been considered in [16].
While this form is very appealing, it is somewhat formal, and it is not immediately clear how to
translate it into an action ofUh(sl(2)) which will be needed below. To find this, we introduce
yet another set of (auxiliary) generators. Considerui, vi with [ui, vi ] = ihv2

i for i = 1, 2,
which are covariant under the linear coaction of Funh(Sl(2)) as in (2.3) and (2.4), and let
zi = uiv−1

i . Furthermore, we impose the commutation relations

[u1, u2] = ihu1v2 − ihv1u2 + h2v1v2

[u1, v2] = ihv1v2

[v1, u2] = −ihv1v2

[v2, v2] = 0.

(2.17)

They are consistent with the linear coaction of Funh(Sl(2)) as will be explained in the next
section, and imply (2.15). The star structureu∗1 = u2, v∗1 = v2 impliesz∗1 = z1 = z2 + ih as
above, and the linear coaction onui, vi obviously induces (2.16). In this linear form, we can
find the dual action ofUh(sl(2)), and then restrict it to the original algebra generated byz, z.

We recall the definition ofUh(sl(2)): it is the Hopf algebra with generators{J±, J 3} and
relations [15]

[J 3, J +] = 2h−1 sin(hJ +)

[J 3, J−] = −[cos(hJ +)J− + J− cos(hJ +)]

[J +, J−] = J 3

(2.18)
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and

1J + = J + ⊗ 1 + 1⊗ J + 1Jj = J j ⊗ e−ihJ +
+ eihJ + ⊗ J j

ε(X) = 0 S(X) = −e−ihJ +
XeihJ + (2.19)

wherej ∈ {−, 3} andX ∈ {J +, J−, J 3}. This is obtained from the result of Ohn [15] by the
replacementh→−ih. It is a∗-Hopf algebra with the reality structure

(J±)∗ = −J± (J 3)∗ = −J 3 (2.20)

which definesUh(sl(2,R)). Introducing

G = e−ihJ +
(2.21)

this becomes

[G, J 3] = 1−G2

[J 3, J−] = − 1
2

[
(G +G−1)J− + J−(G +G−1)

]
[G, J−] = − 1

2ih(GJ 3 + J 3G)

(2.22)

and

1G = G⊗G 1Jj = J j ⊗G +G−1⊗ J j
ε(X) = 0 S(X) = −GXG−1

(2.23)

wherej ∈ {−, 3} andX ∈ {J +, J−, J 3}. Given a (left or right) action ofUh(sl(2)) on
A, one can always define a cross-product algebraUh(sl(2)) n A. As a vector space, this
is Uh(sl(2))⊗A, equipped with an algebra structure defined byua = (u(1) · a)u(2), where
the dot denotes the left action ofu ∈ Uh(sl(2)) on a representation; similarly for a right
action. Hereu(1)⊗ u(2) denotes the coproduct ofu. Conversely, the left actionu · a can be
extracted by commutingu to the right and then applying the counitε of Uh(sl(2)) from the
right.

The dual pairing ofUh(sl(2))with Funh(Sl(2)) has been given in [3]. Using this, it is easy
to find the dual action ofUh(sl(2)) on the variablesu1, v1, u2, v2. This defines a cross-product
algebra as explained above, which can be expressed in terms of the original variablez. The
resulting algebra is

[z, J +] = −1

[z, J−G] = (z2 − ihz + 1
4h

2
)
G2

[z, J 3G] = (2z− ih)G2

(2.24)

and the same relations forz. One can check explicitly that this algebra is consistent with the
relations (2.2), the relations ofUh(sl(2)), and also with the star structurez∗ = z. Therefore,
it is a consistent cross-product algebra for theh-deformed Lobachevsky plane. In terms ofx
andy with z = x + iy, z = x − iy, it becomes

[x, J +] = −1 [y, J +] = 0

[x, J−G] = (x2 − y2 − ihx + 1
4h

2
)
G2

[y, J−G] = (2xy + ihy)G2

[x, J 3G] = (2x − ih)G2

[y, J 3G] = 2yG2.

(2.25)
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With

Dxf (x) := f (x)− f (x − 2ih)

2ih
(2.26)

one finds for functions (power series) inx andy

[f (x), J +] = −∂xf (x) [f (y), J +] = 0

[f (x), J 3G] = (2x − ih)Dxf (x)G
2 [f (y), J 3G] = 2y∂yf (y)G

2

[f (x), J−G] = ((x2 − ihx + 1
4h

2
)
Dxf (x)−Dxf (x + 2ih)y2

)
G2

[f (y), J−G] = (2xy∂yf (y) + ih(2(y∂y)
2 − y∂y)f (y))G2

(2.27)

and

Gf (x) = f (x − ih)G.

We claim that this cross-product algebra implements the isometry algebraUh(slh(2)) on the
h-deformed Lobachevsky plane. In the limith → 0, the generatorsJ +,−J 3G, and−J−G
clearly become the classical generators∂x, 2x∂x +2y∂y, and(x2−y2)∂x +2xy∂y of the algebra
sl(2,R) of isometries. Moreover, in section 3.1, we shall find an explicit expression for the
h-deformed distance, which is invariant under the action (2.25) ofUh(slh(2)). The necessary
tools will be provided in the next section.

3. Braided copies of theh-deformed Lobachevsky plane

In order to write down functions of several variables such asn-point functions, one should
introduce several copies of the algebra of functions, and combine them into a bigger algebra.
Recall the classical case: ifA is a representation of some Lie algebrag compatible with the
algebra structure ofA, more preciselyA is a g-module algebra, this is easy to do: define
A⊗ := A⊗ · · ·⊗A, and letA(n) := 1⊗ · · ·⊗A⊗ 1⊗ · · · be thenth copy ofA. ThenA⊗ is
naturally an algebra (the tensor product algebra) by componentwise multiplication, andA(n)
commutes withA(m) if n 6= m. A⊗ carries the tensor product representation ofg, and its
algebra structure is compatible with this representation.

If A is covariant under a Hopf algebraU which is not co-commutative, this standard
algebra structure onA⊗ is not compatible with the coaction. However, if the Hopf algebra is
quasitriangular with universalR-‘matrix’ R = R1⊗R2 ∈ U ⊗U (in shorthand notation), then
there is a standard way to define a modified algebra structure onA⊗, the so-called ‘braided
tensor product’ [13]: it is defined bya(n)a(m) := 1⊗ · · ·⊗ a(n)⊗ 1⊗ · · ·⊗ a(m)⊗ 1 . . . if
n 6 m, anda(n)a(m) := 1⊗ · · ·⊗R1 · a(m)⊗ 1⊗ · · ·⊗R2 · a(n)⊗ 1 . . . if n > m, where
a(n) ∈ A(n). This is compatible with the action of the quasitriangular Hopf algebraU ; to avoid
confusion, we will denote it byA⊗h .

SinceUh(sl(2)) is in fact triangular, i.e.R12R21 = 1, the above definition can be written
as a commutation relationa(n)a(m) = (R1 · a(m))(R2 · a(n)) in A⊗h whenevern 6= m. This
is a considerable simplification over the quasitriangular case, where one has to distinguish
betweenn > m andn < m. Notice that the commutation relations between functions and the
generators of forms in the calculus (2.8) are precisely of this kind.

For theh-deformed Lobachevsky plane, we have two different actions ofUh(sl(2)) acting
on it, the symplectic one dual to (2.4) and the (tentative) isometries corresponding to (2.24)
found in the previous section. Thus it is not cleara priori how to proceed. What we will do is
to define first the braided algebraA⊗h for the symplectic action since that one is much simpler,
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and verify that it in fact compatible with the action of the isometries as well; this is not obvious
a priori.

For simplicity, introduce just two copies ofA, i.e.x = x⊗ 1 andx ′ = 1⊗ x. In terms of
the variablesr, s of section 2 withx = rs−1 + 1

2ih andy = s−2, this definition leads to

[r, r ′] = ihrs ′ − ihsr ′ + h2s ′s

[r, s ′] = ihs ′s

[s, r ′] = −ihs ′s

[s, s ′] = 0

which is the same as (2.17). In terms ofx andy, this becomes

[x, x ′] = 2ihx − 2ihx ′

[x, y ′] = −2ihy ′

[y, x ′] = 2ihy

[y, y ′] = 0.

(3.1)

It is somewhat disturbing that the commutator ofx andx ′ does not vanish asx − x ′ becomes
large, but this is required by covariance; we will come back to that later. In the complex
variablesz = x + iy, z′ = x ′ + iy ′, one obtains

[z, z′] = 2ih(z− z′) (3.2)

which explains the relation (2.15). This algebra is by construction consistent with the
coaction of the ‘symplectic’ Fun(Slh(2)) equation (2.4), respectively, its dual. It can now be
checked by a lengthy but straightforward calculation that these relations are also compatible
with (2.24), extended to both copiesz and z′. This is not obviousa priori. A somewhat
similar observation has been made [16] for theq-deformed case in terms of the fractional
transformations considered in section 2.

The concept of braided copies of a covariant algebra is also relevant if one tries to define
a Fock space of creation and annihilation operators which are covariant under some quantum
group. In general, it is not obvious then how to define a totally symmetric or antisymmetric
Hilbert space, since the deformed analogue of the permutation operator,R̂, has eigenvalues
which are different from±1. In the triangular case, this problem does not occur, sinceR̂2 = 1
by definition. From this point of view, the triangular case seems particularly well suited
to formulate a quantum field theory. Perhaps, however, triangular Hopf algebras are not a
‘sufficiently’ non-trivial deformation in order to improve the UV behaviour of the commutative
limit. To obtain some insight into this question was one of the motivations of the present work.

3.1. Invariant distance

To make the algebra (3.1) more transparent, we define

δx = x − x ′ δy = y − y ′

and

x = 1
2(x + x ′) y = 1

2(y + y ′).
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In terms of these variables, one finds as only non-zero commutators

[x, y] = −2ihy

[x, δx] = −2ihδx

[x, δy] = −2ihδy.

(3.3)

Notice that these are the same relations as for the calculus whereδx, δy are replaced by dx
and dy. In particular,y−1δx andy−1δy play the role of the Stehbein (2.11), and they commute
with x andy. Thus there is only one non-trivial commutator among the four generators of
A⊗hA as opposed to the caseA⊗A, where the propagator is regularized [12]. In particular,
it is somewhat counterintuitive that the ‘relative’ and ‘average’ coordinates donot mutually
commute (cf [12]); again, this is forced upon us by the covariance requirement.

The geodesic distance of two points(x, y) and(x ′, y ′) on the classical Lobachavsky plane
is given by [9]

d = cosh−1

(
1 +

1

2yy ′
((δx)2 + (δy)2)

)
. (3.4)

The subalgebra generated byy, δx, δy is Abelian in theh-deformed case as well, and it can be
checked that the same expression is also invariant under theh-deformed isometries. In fact,

y−1y ′−1((δx)2 + (δy)2)

commutes withUh(sl(2)) in the cross-product algebra (2.24), and together with 1 generates
the centre ofA⊗hA. Again, this is more easily seen in terms of the fractional transformation
of section 2, but less rigorous. Thus we shall define (3.4), which is an invariant two-point
function, to be the invariant distance function on theh-deformed Lobachevsky plane.

Of course the same considerations apply for the case of several variables. It is then clear
that the set of invariantn-point functions is the same as classically, i.e. they are precisely the
functions which depend only on the relative distances of any pairs of variables, defined as in
(3.4).

One can check that the Hodge star (2.14) is invariant under the isometries as well.

4. Invariant functionals and inner products

In quantum mechanics, symmetries are implemented as unitary transformations on a Hilbert
space. To realize this and similarly to define invariant propagators, one has to find a positive
definite inner product on a vector space which is invariant under the symmetry. Such invariant
inner products are naturally obtained from a positive state, which should satisfy

〈u · a〉 = ε(u)〈a〉 (4.1)

and〈a〉∗ = 〈a∗〉, wherea is an element of a star algebraA andu is an element of a symmetry
(Hopf) algebraU . Since we are considering spaces of functions on a (non-commutative)
manifold, this can be considered as an invariant functional. Of course,〈 〉 is defined only on
a certain subset of ‘measurable’ elements of a suitable completion ofA, as classically. This
will become clear in our example.

It is useful to formulate this within the framework of cross-product algebras. Any state
(functional) onA defines a state onUh(sl(2)) n A, written as〈ua〉, by 〈ua〉 := ε(u)〈a〉. If
the state onA is invariant, this implies using some standard identities of Hopf algebras that
〈uav〉 = ε(u)ε(v)〈a〉 for anyu, v ∈ Uh(sl(2)), and in particular

〈[u, a]〉 = 0 (4.2)
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for anyu ∈ Uh(sl(2)). Conversely, the state〈 〉 onA is invariant if (4.2) holds. The latter
form is quite intuitive, and is well suited for our situation. We will work with this formalism
from now on.

As usual, each invariant state induces an invariant inner product as follows:

〈f, g〉 = 〈f ∗g〉. (4.3)

It is invariant, because〈f, u ·g〉 = 〈f ∗ug〉 = 〈(u∗ ·f )∗g〉, usingu ·f = u1f Su2 and standard
identities of Hopf-∗ algebras.

The conditions (4.2) for the subalgebra ofUh(sl(2)) generated byG, J−, J 3 are

〈[f,G]〉 = 0 (4.4)

〈[f, J 3G]〉 = 0 (4.5)

〈[f, J−G]〉 = 0 (4.6)

for f ∈ A. We will write the elementsf in the formf (x|y) =∑ fn,mx
nym, i.e. withx to the

left of y. After some calculations using (2.27), they reduce to the following two requirements:

〈f (x|y)〉 = 〈f (x + ih|y)〉 (4.7)

and 〈
y
∂

∂y
f (x|y)

〉
= 〈f (x|y)〉. (4.8)

Here ∂
∂y
f (x|y) is the ordinary differentiation with respect toy, after ordering the variables

as above. It turns out that (4.6) is a consequence of (4.4) and (4.5). This is similar to the
classical case, where the invariant integral is also uniquely determined by two isometries, and
automatically respects the third. The only difference to the classical case is that the translation
invariance with respect tox is imposed only for a finite displacement rather that for all. This
of course comes from restricting ourselves to the algebra generated byG, J 3, J− rather than
J +, J 3, J−, which is consistent in theh-deformed case only.

One invariant functional satisfying these conditions is now obvious: it is simply the
classical one. That is, consider the spaceL1(R2

+, dµ) of functionsf (x, y) on the upper half-
plane which are integrable with respect to the measure dµ = y−2 dx dy = θ1θ2. We write
the functions (or more precisely a dense set of analytic functions inL1(R2

+, dµ)) in the form
f (x|y) so that they define elements in (a completion of)A, and we set

〈f (x|y)〉(0) :=
∫
f (x, y)dµ. (4.9)

Invariance underG follows by analytic continuation inx, e.g. using the basis of Hermite
functions inx. In this way, we obtain a space of functions on theh-deformed Lobachevsky plane
which is isomorphic toL1(R2, dµ). The corresponding Hilbert space will be defined explicitly
in the next section. At this point, theh-deformed case indeed appears to be isomorphic to the
undeformed case.

It will turn out, however, that this ‘classical’ Hilbert space is not sufficient to obtain
invariant propagators, but we shall be able to introduce ‘extended’ Hilbert spaces by taking
advantage of the weaker requirement (4.7).

Finally, one can define an integral of 2-formsα = f (x|y)θ1θ2 by∫
α = 〈f (x|y)〉.

It is easy to see that invariance of〈 〉 underG, J− andJ 3 is equivalent to Stokes’ theorem,∫
dω = 0, and that the adjoint of d in the usual sense is indeedδ = ∗d∗.
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5. The propagator

Theh-deformed Laplacian can be defined [4] as−1 = dδ + δd. In this form, the invariance
under the isometriesUh(sl(2)) is obvious. To calculate it explicitly, we introduce [5]
derivationsea dual to the 1-formsθa, defined by

e1x = y e1y = 0

e2x = 0 e2y = −y.
In terms of them the Laplace operator1h can be written as

−1hφ = e2
1φ + e2

2φ + e2φ φ ∈ Ah. (5.1)

First we recall the calculation of the propagator in the commutative case. In the
commutative limit1h tends to the ordinary Laplace operator on the Lobachevsky plane:

lim
h→0

1h = 1̃ = −ỹ2(∂2
x̃ + ∂2

ỹ ). (5.2)

Here(x̃, ỹ) are the commutative limits of the operators(x, y). The spectrum of1h in the
commutative limit is given [17] by the eigenvalue equation

1̃φ(x̃, ỹ) = λk,κφ(x̃, ỹ). (5.3)

By the separation of variablesφ(x̃, ỹ) = f (x̃)g(ỹ) one finds the differential equations

∂2
x̃ f (x̃) = −k2f (x̃) (5.4)

ỹ2∂2
ỹ g(ỹ) = (k2ỹ2 − λk,κ)g(ỹ) (5.5)

wherek ∈ R. We defineκ2 by

λk,κ = κ2 + 1
4.

The eigenvaluesλk,κ do not, in fact, depend onk and are infinitely degenerate. If we then set
z = ikỹ andg(ỹ) = √z J (z), equation (5.5) becomes the Bessel equation

J ′′(z) +
1

z
J ′(z) +

(
1 +

κ2

z2

)
J (z) = 0. (5.6)

A normalized set of eigenfunctions for the Laplace operator is given by

φk,κ(x̃, ỹ) = eikx̃π−3/2
√
κ sinhπκ

√
ỹKiκ(|k|ỹ) (5.7)

with κ > 0 andk 6= 0. The caseκ < 0 can be excluded since

K−ν(|k|ỹ) = Kν(|k|ỹ).
The casek = 0 is also excluded since whenỹ → 0

Kiκ(|k|ỹ)→ 1

2
0(iκ)

(
2

|k|ỹ
)iκ

+
1

2
0(−iκ)

(
2

|k|ỹ
)−iκ

. (5.8)

If we setx̃i = (x̃, ỹ) the completeness relation can be written as

δ(2)(x̃i − x̃i′) =
∫ +∞

−∞

∫ ∞
0
φk,κ(x̃, ỹ) φ

∗
k,κ (x̃

′, ỹ ′) dk dκ (5.9)

and the propagator of(1 +µ2) is given by

G(x̃i, x̃i′) =
∫ +∞

−∞

∫ ∞
0

φk,κ(x̃, ỹ) φ
∗
k,κ (x̃

′, ỹ ′)

κ2 + 1
4 +µ2

dk dκ. (5.10)
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Now consider the non-commutative case. Notice that although the classical Lobachevsky
plane is invariant under the reflectionx̃ → −x̃, this is no longer the case whenh 6= 0. By
again ordering any monomial inA in the formφ(x|y), one can formally separate the variables
in the eigenvalue problem as before [4] and the eigenvalue equation can be decomposed into
two differential equations. The equations for the factorf (x) are given by

e2
1f (x) = −L2

+y
2f (x)

e2
1f (x) = −L2

−f (x)y
2

(5.11)

whereL± ∈ R. Since the commutation relations [y, e2] and [ỹ, ỹ∂ỹ ] are of the same form, the
differential equation forg(y) has the same form as that of (5.5) even though the algebra has
changed:

(e2
2 + e2)g(y) = (L2

±y
2 − λk,κ)g(y).

Consider the functions

L±(k) = e±2hk − 1

2h
.

For anyk ∈ R let eikx be defined as a formal power series in the elementx. Then from the
action ofe1 onx it follows that

e1eikx = iL+(k) yeikx = iL−(k) eikxy (5.12)

where we have used

eikxf (y) = f (e2hky) eikx . (5.13)

The solution of equation (5.11) is therefore given by

f (x) = eikx L± = L±(k). (5.14)

A family of formal solutions of the eigenvalue equation on the quantum Lobachevsky plane
which tends to normalized functions in the commutative limit is given fork 6= 0, κ > 0 by

φk,κ(x, y) = π−3/2
√
κ sinhπκ eikx√y Kiκ(|L−(k)|y). (5.15)

ThusL−(k) plays the role of the linear momentum associated withx. Although |k| remains
invariant under the mapk→−k this is not the case for|L−(k)|, a fact which is a manifestation
of the breaking of parity by the commutation relations. Moreover, the range of the momentum
L−(k) in thex-direction appears at this point to be limited to the region(−1/2h,∞). We will
come back to this in a moment.

Define the one-particle Hilbert spaceH(0) to be generated by the (improper) basis

φk,κ(x|y) = π−3/2
√
κ sinhπκ eikx√y Kiκ(|L−(k)|y)

for k ∈ (−∞,∞) andκ > 0. The inner product on this space should be invariant under
Uh(sl(2)), which means that the star structure (2.20) ofUh(sl(2)) is induced by the adjoint of
operators on the Hilbert space, as classically. As explained in the previous section, one such
inner product is given by

〈f (x|y), g(x|y)〉(0) =
∫

: f (x|y)∗g(x|y) : dµ (5.16)

where the latter is the classical integral after normal ordering, i.e.x should be commuted to
the left ofy before taking the integral. It is clear that the Laplacian is (formally) a symmetric
operator, sinceδ is the (formal) adjoint of d.
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Now we can calculate the norm of the eigenstates as

〈φk,κ , φk′,κ ′ 〉(0) =
∫

: φk,κ(x, y)
∗ φk′,κ ′(x, y) : dµ

= π−3
∫ √

κ sinh(πκ)
√
κ ′ sinh(πκ ′)

:
√
yK∗iκ(|L−(k)|y) e−i(k−k′)x√yKiκ ′(|L−(k′)|y) : dµ

= δ(k − k′) π−3/2
∫ ∞

0
dy

1

y

√
κ sinh(πκ)

√
κ ′ sinh(πκ ′)

×K∗iκ(|L−(k)|y)Kiκ ′(|L−(k′)|y)
= δ(k − k′) δ(κ − κ ′) (5.17)

as classically. The Hilbert spaceH(0) can now be defined as the closure of normalizable
wavepackets build from this ‘basis’ of eigenfunctions, which obviously define an isometry
with the usual, undeformed Hilbert space of square-integrable functions.

Using two braided copies ofA as in the previous section, the propagator can be written as

G(xi, xi′) =
∫ +∞

−∞

∫ ∞
0

φk,κ(x, y) φ
∗
k,κ (x

′, y ′)
λk,κ +µ2

dk dκ

= π−3
∫ +∞

−∞

∫ ∞
0
(λk,κ +µ2)−1κ sinh(πκ)

× eikx√y Kiκ(|L−(k)|y)
√
y ′K∗iκ(|L−(k)|y ′) e−ikx ′ dk dκ (5.18)

= π−3
∫ +∞

−∞

∫ ∞
0
(λk,κ +µ2)−1κ sinh(πκ)

× eikxe−ikx ′√y Kiκ(|L+(k)|y)
√
y ′K∗iκ(|L+(k)|y ′) e2hk dk dκ. (5.19)

Here we have used (5.13), the identity|L−(k)| e2hk = |L+(k)|and the fact that the commutation
relations (3.1) betweeny andx ′ are the same as those betweeny ′ andx ′.

As is shown in appendix A, the commutation relations (3.1) betweenx andx ′ imply the
following identity:

eikxe−ikx ′ = eiL+(k) δx (5.20)

where we recallδx = x − x ′. Together with (5.13), it follows

G(xi, xi′) = π−3
∫ +∞

−∞

∫ ∞
0
(λk,κ +µ2)−1κ sinh(πκ)

×eiL+(k) δx
√
yKiκ(|L+(k)|y)

√
y ′K∗iκ(|L+(k)|y ′) e2hk dk dκ. (5.21)

Now recall that the subalgebra generated byy, δx, δy is Abelian. Thus we can treat it as an
ordinary function algebra, and change variables top = L+(k), dp = e2hk dk. We have then

G(xi, xi′) = π−3
∫ +∞

−1/2h
dp
∫ ∞

0
dκ (λp,κ +µ2)−1κ sinh(πκ)

×eipδx√yKiκ(|p|y)
√
y ′K∗iκ(|p|y ′). (5.22)

Recall thatλp,κ does not depend onp. The integrand is therefore exactly the same as classically
(see (5.10) and (5.7)); only the integration limit ofp has changed.
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This is actually a rather strange result. Since the Laplacian is invariant underUh(sl(2)),
one should expect that the propagator would also invariant under this algebra (this is made
more explicit in appendix B), which implies that it is a function of the invariant distance, which
is the same as classically as we have seen. We just found that it is ‘almost’, but not quite:
if the integration limits were the same as classically, it would of course be invariant, but the
integration bound−1/2h for p spoils invariance. How is this possible?

The only explanation seems to be that the representation ofUh(sl(2)) on the Hilbert space
generated by the eigenfunctions (5.15) is not a∗-representation, i.e. the generators ofUh(sl(2))
are not represented as (anti)self-adjoint operators. A similar phenomenon is known to happen
in the case of theq-deformed quantum line [8], where one has to consider reducible Hilbert
space representations in order to obtain self-adjoint representations of the quantum algebra.

In fact, we can find such an ‘extended’ Hilbert space here as well. Let

φ
(n)
k,κ (x|y) = π−3/2

√
κ sinhπκ eikx√y Kiκ(|L−(k)|y)

for k ∈ (−∞,∞) +
inπ

2h
and κ > 0 (5.23)

and letH(n) be the closure of normalizable wavepackets built from (5.23), with an inner product
defined as

〈f (x|y), g(x|y)〉(n) :=
∫

: f (x, y)∗ enπx/hg(x, y) : dµ. (5.24)

It is easy to see that this inner product is invariant under the sub-Hopf algebra ofUh(sl(2))
generated by{G2, J 3G, J−G} which commutes with enπx/h, and that the Laplacian is still
symmetric since denπx/h = 0.

As the Hilbert space,H(n) is of course equivalent toH(0), but not as a representation of
Uh(sl(2)). For example, consider the above ‘plane-wave’ states inH(1): they are the eigenstates
of the Laplacian with momentumL−(k) in thex-direction in the interval(−∞,−1/2h), which
were ‘missing’ above. We can calculate the inner product onH(1):〈
φ
(1)
k,κ , φ

(1)
k′,κ ′

〉
(1) =

∫
: φ(1)k,κ (x, y)

∗ enπx/hφ(1)k′,κ ′(x, y) : dµ

= π−3
∫ √

κ sinh(πκ)
√
κ ′ sinh(πκ ′)

:
√
yK∗iκ(|L−(k)|y) e−i(k−k′)x√yKiκ ′(|L−(k′)|y) : dµ

= δ(k − k′) π−3/2
∫ ∞

0
dy

1

y

√
κ sinh(πκ)

√
κ ′ sinh(πκ ′)

×K∗iκ(|L−(k)|y)Kiκ ′(|L−(k′)|y)
= δ(k − k′) δ(κ − κ ′). (5.25)

One can now repeat the calculation (5.19) forH(1),

G(1)(xi, xi′) =
∫

dk
∫ ∞

0
dκ
φ
(1)
k,κ (x, y) φ

(1)∗
k,κ (x

′, y ′) enπx/h

λk,κ +µ2

= π−3
∫

dk
∫ ∞

0
dκ
(
λk,κ +µ2

)−1
κ sinh(πκ) ·

× eiL+(k) δx
√
yKiκ(|L+(k)|y)

√
y ′K∗iκ(|L+(k)|y ′) e2hk. (5.26)
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Changing variables again top = L+(k), dp = e2hk dk, we obtain

G(1)(xi, xi′) = π−3
∫ −1/2h

−∞
dp
∫ ∞

0
dκ
(
λp,κ +µ2

)−1
κ sinh(πκ) eipδx

×√yKiκ(|p|y)
√
y ′K∗iκ(|p|y ′). (5.27)

This is precisely the missing piece in order to obtain an invariant propagator. We therefore
define the ‘extended’ Hilbert space to be the direct orthogonal sum

H := H(0) ⊕H(1). (5.28)

Then onH, the propagator is invariant and exactly as classically,

GH(xi, xi′) = π−3
∫ ∞
−∞

dp
∫ ∞

0
dκ (λp,κ +µ2)−1κ sinh(πκ) eipδx

×√yKiκ(|p|y)
√
y ′K∗iκ(|p|y ′). (5.29)

6. Discussion

It was found in [12] that the propagator on theh-deformed Lobachevsky plane is finite if
one uses the usual, ‘unbraided’ tensor product; similarly for a non-commutative flat plane.
However, this tensor product ‘breaks’ the invariance under the quantum group.

In this paper, we have first seen that theh-deformation is not a trivial deformation, even
though it is just a twist of the undeformed case; it turns out that the structure of the Hilbert
space is modified. If this is done properly and the covariant, braided tensor product is used,
then the propagator turns out to be the same as classically; in particular, it is divergent. This
is certainly disappointing, since the main reason for considering the deformed manifolds is
to ‘smear’ the points, thereby regularizing the UV divergences. It is not entirely clear how
to understand this result. It could be that the algebra is simply not non-commutative enough.
Another interpretation might be that the identification of the ‘distances’δx, δy in the braided
tensor product is not satisfactory, in particular, since they do not commute with the ‘average’
valuesx, y. See also the related discussion in [12]. In other words, the non-trivial (braided)
commutation relations between different copies of the quantum space which are required by
the covariance under a quantum group imply some kind of interaction. It seems that the
physical meaning of the braided tensor product is not completely understood, and deserves
further investigation.
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Appendix A

We prove that eikxe−ikx ′ = eiL+(k) δx , where [x, x ′] = 2ih(x − x ′).
From [x, δx] = −2ihδx it follows that [x, . . . [x, x ′] . . .] = −(−2ih)nδx for n

commutators, and thus

eikxx ′e−ikx = x ′ − (e2hk − 1) δx. (A.1)



Propagator on theh-deformed Lobachevsky plane 341

Let fk(x, x ′) = eikxe−ikx ′ . Using (A.1), we find

d

dk
fk(x, x

′) = ixeikxe−ikx ′ − eikx ix ′e−ikx ′

= i(x − x ′ + (e2hk − 1) δx)fk(x, x
′)

= e2hk iδxfk(x, x
′). (A.2)

Consider dp(k)/dk = e2hk, with the solutionp(k) = 1
2h (e

2hk − 1). Then (A.2) is equivalent
to

dfp(x, x ′)
dp

= iδxfp(x, x
′)

with the solutionfp(x, x ′) = eipδx . Therefore,

eikxe−ikx ′ = e(i/2h)(e
2hk−1) δx = eiL+(k) δx . (A.3)

Appendix B

We explain without mathematical rigour why the propagator should be invariant under
Uh(sl(2)) if the latter is implemented via a∗-representation. We assume the spectral
decomposition1= ∫

n
φn⊗φ∗n where1φn = λnφn.

Foru ∈ Uh(sl(2)), one has

u ·G(z, z′) = u
(∫

n

λ−1
n φn(z) φ

∗
n(z
′)
)

=
∫
n

λ−1
n (u(1) · φn(z))(u(2) · φ∗n(z′)) (B.1)

wherez stands for(x, y). Let

u · φn =
∫
l

φlπln(u).

Sinceπ is a∗-representation one hasπln(u∗) = π∗nl(u). We claim that this implies that

u · φ∗k =
∫
l

πkl(Su) φ
∗
l (B.2)

whereSu is the antipode ofu. Indeed, usingUh(sl(2))nA, one has

u · φ∗k = u(1)φ∗k Su(2) =
(
S−1(u∗(2)) φku

∗
(1)

)∗ = ((S−1u∗) · φk
)∗

=
(∫

l

φlπlk(S
−1u∗)

)∗
=
∫
l

φ∗l π
∗
lk(S

−1u∗) =
∫
l

πkl(Su) φ
∗
l (B.3)

where the∗-representation property was used in the last line, as well as standard identities for
∗-Hopf algebras. Now we can conclude that

u ·G(z, z′) =
∫
n,l,k

λ−1
n φl(z) πln(u(1)) πnk(Su(2)) φ

∗
k (z
′)

= ε(u)
∫
n,l,k

φl(z) δlkφ
∗
k (z
′) = ε(u)G(z, z′). (B.4)
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